Showing posts with label budget. Show all posts
Showing posts with label budget. Show all posts

Friday, October 11, 2019

TrashTeg, The Chronicles; Part 4: Home Depot Racing Sway Bar


Introduction

The Integra and Civic chassis that Honda produced from the late eighties to the early 2000s were set apart from average FWD cars because they could handle well out of the box.  With modification, they could handle even better.


One common problem with FWD cars is understeer.  Because the front wheels are doing the accelerating, turning, and the majority of stopping, the tires tend to "fall off" sooner than their RWD counterparts.  To combat this, FWD race car builders increase the chassis frequency, or "stiffness," of the rear of the car using sway bars or stiffer springs.

Photo of Chelsea the Civic Dog Legging by WindShadow Studios

In this post, readers will see how EJ2 Track Rat was able to create a low-budget solution for drivers looking to increase rear roll stiffness via use of a stiffer sway bar in the rear of the car.

Background

Alex's TrashTeg was driving fairly well.  He was able to pass competition school with NASA Northeast in it and he learned a fair amount about racecraft during the course of the season.  He was also having a ton of fun.  However, Alex was beginning to realize the limits of his budget-built car-- Partially because his car had too much dive, squat, and roll under braking, acceleration, and cornering, respectively.

Photo of TrashTeg Leaning by WindShadow Studios

When TrashTeg was first built, it had the following setup:
  • 205 Toyo RRs 
  • At a ride height of ~5.5-6 inches 
  • With a front spring rate of 650 pounds/inch,
  • Rear spring rate of 750 pounds/inch,
  • No front sway bar,
  • A 25 mm GodSpeed (eBay) rear sway bar,
  • And some Koni Sports he got for free from our friend Anthony
Our goal was to increase the roll stiffness of the car while still keeping the car controllable at the limits with a healthy amount of rotation in corners.  We had two options: increase front and rear spring rate, with a stiffer rear spring rate than front, or increase front spring rate and throw a big rear bar on.

Since I only had a pair of 800 pound/inch springs in my garage, we figured we'd throw the 800 pound/inch springs up front, and increase rear roll stiffness without springs.  The easiest way to do this is with a bigger sway bar, which A-Spec Racing (ASR) makes.  Their 32 mm hollow bars come in different thicknesses and since they're hollow, they have the advantage of less weight vs. their solid counterparts for the same amount of torsional resistance.

ASR Hollow Rear Sway Bar Kit

However, ASR bars are not cheap at ~$500 for a full kit and Alex had already purchased a $300 eBay sway bar kit.  He wasn't about to spend $500 more for the ASR product as a result.  But, he and I were both interested in doing something creative.

Getting Ready for some "Creativity" with a Welder

A while back, I saw a thread on a forum where a Miata driver welded additional metal to his/her sway bar to increase torsional resistance, thereby increasing chassis frequency at the respective end of the car.  

Much debate was had on this thread-- specifically whether one can weld to a sway bar and expect it to work because sway bars go through a forging process that allows them to become "spring steel."  Spring steel is highly malleable, but returns to the shape it was bent from fairly easily.  Welding to spring steel changes that property and increases brittleness.

Example of a Cracked Sway Bar (Not Ours)

Doing the Deed

Since we don't care about armchair engineers and we buy parts for our destined-for-doom race cars on eBay, we decided it'd be worth a go to attempt something similar.  The new setup would have the following changes: 
  • Ride height lowered to 5" at pinch welds
  • Front spring increased to 800 pounds per inch
  • A "custom" xxx mm solid rear sway bar, courtesy of the plumbing aisle at Home Depot
 We started by purchasing some steel black tubing with an inner diameter of 1" and a wall thickness of 0.133" for about $20.  A 1" inner diameter equates to 25.4 mm which is only slightly larger than the OD of our eBay sway bar.  

Our plan was to cut this bar to length so that it would fit between the pillowblocks that mount the sway bar to the subframe.  Then, we would cut the bar in half, length-wise, and weld half of the Home Depot pipe to the sway bar.  This would result in a solid sway bar with a diameter of ~28 mm.


Sway Bar Diagram from ASR

Our Plan from EJ2 Track Rat

We laid out the eBay sway bar after purchasing the pipe from Home Depot and we started by measuring where our addition would be and how short we'd need it cut.

Laying Out the Sway Bar

Next, we cut our Home Depot pipe to length using a cut-off wheel.  Ideally this would be done with a band saw, but with a pipe-vise it's easy to do with a $30 Harbor Freight cut-off wheel.  The cut just isn't as clean.

Alex Cutting Home Depot Pipe to Length

Next we cut the pipe in half, lengthwise using our cut-off wheel and our old school bench vise from eBay.

Cutting the Home Depot Pipe in Half Length-Wise

To weld our cut-off half of the Home Depot pipe to our eBay sway bar, we would need to first clamp the OD of the Home Depot bar to the sway bar.  After grinding the surface of the Home Depot pipe and the sway bar clean, we clamped the Home Depot bar to the sway bar using a set of Milwaukee vise grips.

Half of a Home Depot Pipe Clamped to an eBay Sway Bar

I ran a bead across a section to the left and right of the vise grip, then moved the vise grip down the length of the sway bar and repeated the process...the entire thing was done with flux wire.

Close-up of Beads Ran Next to Vise Grip

The entire bar welded up looked amusing, to say the least.  It really was also great practice for welding.  I needed some, so this was of benefit to me.

Picture 1 of Welded Sway

And Picture 2...

Finally, we sprayed the bar gloss black and mounted it onto the car.  Once on the car, we checked to ensure clearance between our modified bar and the subframe brace was satisfactory.

The Bar Mounted to the Subframe

Checking Fit with Bar at Full Droop

Checking Fit with Bar at Full Compression

And after installing the rear bar, we installed my front springs and manually set ride height as we always do-- the LoBuk way.

Alex Setting Ride Height to Clock Bushings

Another View of Alex Setting Ride Height to Clock Bushings

Impressions

Alex tested TrashTeg at Watkins Glen in October of 2019 with NASA NE to see how the changes improved the car.

Alex Suiting up for a Race at The Glen

On Track, he noticed sharper turn-in due to the stiffer front springs, but the larger rear sway also allowed the car to have less mid-corner push.  The new sway bar we created held up for a full weekend of abuse at one of the best and most demanding tracks in the Northeast.

After our racing shenanigans on Saturday we attended a NASA Northeast BBQ and had a good time.  The car held up, the mods made it faster, and we had a great time.

Me, Alex, Jeremy, and Yuko at the NASA NE BBQ

Until next time, thanks for reading!

Sunday, June 23, 2019

Building a Budget Race Car Transmission: Used Differentials

Introduction

It was some time ago, in December of 2018, where I was in the middle of "off-season improvements" that I decided to build my own transmission.

Welding exhaust flanges in the winter

However, well-built, competitive Honda Challenge transmission builds can get expensive.  For example:

*Aftermarket final drive = ~$600
*MFactory metal plate differential = ~$900
*94-01 Integra "Brass Master" transmission rebuild kit from Syncrotech = ~$650
*New transmission gearset and case = ~$150-300 used (depends on seller/condition)

The above combination of parts doesn't consider the use of a better differential either, which can run upwards of $1500 (OS Giken).

OS Giken assembly

So, my goal was to assemble a competitive transmission setup for Honda Challenge H4 using as little resources as possible.  Similar to a lot of other parts on my car, I planned to hunt Facebook Marketplace, forums, eBay, and Craigslist for sales or deals on used parts for the build.

Custom eBay cold air intake, MSD coil bracket made from an oil pan, and an entire MSD setup I got for ~half-of-retail price

The first part of this series will cover selecting the differential.

What Does a Differential Do?

Whether in a front-wheel, rear-wheel, or all-wheel drive car, the differential takes power from the transmission's final drive and distributes it to the left and right axles.  

The simplest and most common differential is termed an "open" differential by car enthusiasts.

I'm not going to delve into specifics about this differential type.  The most important thing to remember about an open differential is that by design, the wheel with the least grip spins the fastest.  

This means, when going around a corner, you'll notice the car has a tendency to spin the inside wheel while the outside wheel isn't getting power.  Not only is this slow, but it's also lame.  In drag racing, this tends to result in one-wheel burnouts.


For specifics on an open differential, check out the video below:

LearnEngineering's video on open differential function

The next type of differential is called a "limited slip" differential (because it limits the slip of the wheel with the least grip).

There are two common types of limited slip differentials-- a torsen or gear-type differential and a metal plate or clutch-type differential.  

A torsen differential uses gears to limit slip and transmit power more evenly between the two axles.  Since I don't want to delve into specifics, I'll explain the pros and cons of a torsen:

Torsen pros:
*low-maintenance-- change fluid once a season for a road racing car
*easy to drive at low speed-- good for street driving
*typically cheaper than clutch-types

Torsen cons:
*Corner exit speed is not as high relative to a clutch type
Cannot adjust lockup percentage like in a clutch type
Cannot adjust lockup on decel or accel like in a clutch type

A torsen differential's function is described in the video below:

LearnEngineering's video on torsen differential function

A clutch differential uses clutch packs to transmit power from the transmission's final drive gear to both axles in an even manner which "limits slip."  A description of their function is shown below:



Torsen diffs are durable, relatively cheap, relatively fast, and great for daily driving since they don't provide a lot of low speed steering resistance.  So why would we want to run a clutch type diff?  Let's review the pros and cons below:

Clutch-type cons:
*Expensive fluid with friction modifier generally needed
*Requires fluid change after every weekend to avoid excess wear
*Can fail sooner than torsens if maintenance not kept up
*Expensive to purchase

Clutch-type pros:
*Generally faster than torsens  in a FWD car mid-corner to exit if set up correctly
*Adjustable for lockup on decel and accel
*Amount of lockup is adjustable

Seems like there are a lot of cons to running a clutch-type.  So why would we run it?  Well-- real-world experience and data suggest there's a benefit in lap time from the lowest Honda Challenge classes to the highest.  

For example, exiting corners, I sometimes have to wind my wheel out sooner and take a wider line to avoid cooking tires while competitors with clutch-type diffs can stay tighter, taking up less distance and thus less time.  Data reinforces this conclusion from the "butt dyno."

Watch corner exit speed in the in-car vs the silver hatch

Another example was when I drove the white DA Integra on the left and laid down a 0.7-second-faster lap time than in my car on my fourth lap ever in the DA.  Mid-corner and corner-exit grip were notably better due to the diff.  

NOTE: There were other variables in that case.  The car's final drive helped with corner exit speed at the track we were at.  The DA also had better, double-adjustable Konis in it than I had which made curbing a breeze to drive over.  And lastly the Integra was more stiffly sprung in the rear, which helped it rotate.

Brian's DA Integra and Damien's EK Hatch with an E30 in tow

What's the Diff?

I eventually found a Spoon Sports 1.5-way B16/B18B1 diff for ~$350 used.  Not knowing much about diffs and willing to take a risk, I drove down to Delaware, very close to where I lived at one time in my life, and I picked up this diff without asking many questions.

 
Diff with B18B1/B16 ring gear diameter

These diffs typically cost more than $1100 new on the internet.  I considered myself lucky at the time.

Making it all Work

The first thing I noticed when I brought it home was that the ring gear where the vehicle speed sensor (VSS) goes was chewed up.  This was concerning:


This was likely caused by the previous owner not using the correct VSS gear.  Typically, when you buy a new diff, the diameter of the case is larger, so the manufacturer will include a different VSS gear to match up with the diff.  This is most common with:

*OS Giken
*Cusco
*Kaaz/Spoon

So, I began looking for VSS gears for a Spoon differential.  This part is hard to find as people don't typically sell it used and you usually have to buy it straight from the manufacturer.  However, since Kaaz makes the Spoon differential for the B Series tarnsmission, I was able order a new one for $150 shipped through their US sales department.

This brought total cost to $500...


Some pictures from my thread at Honda-Tech.com

Next, I opened up the differential and looked at the internals to see how bad the clutch packs were and if any of the gears were damaged.  Kaaz has a handy video that shows you how to disassemble their differentials shown below:

Differential assembly and disassembly

The plates had some of their clutch material worn off but none of them were missing teeth or extremely burned up.  Pictures of the plates are below:




All twelve clutch plates from the Spoon/Kaaz differential

The belleville washers were in rough shape.  Lots of scoring around the inner and outer diameter of the washer with a slight burr formed on the inner diameter of one of the belleville washers.  Additionally, the thrust washers were of different IDs and ODs and thicknesses.  In the pictures below, Thrust Washer B was thicker than A which suggests the previous owner tried altering initial lockup of the diff.

When I sent pictures of just these four pieces (NOT even the plates), Kaaz recommended a full rebuild kit-- about $250 dollars (wasn't gonna happen).  I requested the individual parts to no avail.  Kaaz would only sell all or nothing:


Thrust washers, belleville springs, side-by-side

To see how messed up my diff actually was, since Kaaz stated they "don't recommend patches," I began doing some research.

I spent a long time trolling the internet looking at the condition of others' diff plates, experiences they had with their Kaaz diffs, and reassembly and maintenance recommendations.  I read probably somewhere between 20 and 30 Honda-Tech.com threads, watched a bunch of YouTube videos, and stumbled across some less-known, but extremely helpful resources such as a blog called Pinderwagen.com.

Pinderwagen's tricked out Volkswagen

Pinderwagen was extremely useful in helping me determine that my clutch plates were probably in good condition.  I read their article on obtaining a used Kaaz unit similar to mine and saw the condition of their plates.  

After reading about their experience tracking the car with the plates in the as-found condition for a full season, I found out that their car performed very well.  I also saw that their data confirmed my understanding of speed from a plate-type vs. a torsen diff.  As a result, I decided to rebuild my diff as it sat-- also per directions on Pinderwagen and from other sources.

Pinderwagen's article on rebuilding a Kaaz diff

Rebuilding the diff is as follows:

1.) Clean the internals of the diff with solvent
2.) Lube all components with fresh differential fluid (I use Torco RTF per recommendation from other racers)

Torco RTF

3.) Reassemble the diff in order from either Pinderwagen's article or the Kaaz video on YouTube.


4.) Torque the allen bolts to spec for the diff

Assembled Kaaz diff on my dinner table with some Neshaminy Creek Brewing Company IIPA

Thanks for reading and see you guys here next time.