Showing posts with label Racecar. Show all posts
Showing posts with label Racecar. Show all posts

Tuesday, December 10, 2019

EJ2 Track Rat Starts a YouTube Channel!

Over the course of this off-season (at least in the Northeast), you can expect EJ2 Track Rat to be doing some new and innovative things.  For example, EJ2 Track Rat was recently featured on Garage Heroes in Trainings' Podcast.

Working on the Capri
The Garage Heroes in Training Being Garage Heroes

Well, EJ2 Track Rat has created its own YouTube channel with its first video.  The video is already gaining traction as a popular video among the high performance driving and racing community.  

It is entitled "5 Things You're Doing Wrong in HPDE and Track Days"

EJ2 Track Rat's First YouTube Video

When you get a chance, take a look.  There's some great information on common mistakes made by drivers at all levels in the sport.  Feel free to like, subscribe, and comment on the video, or leave your opinions on this blog post!

Thanks for reading.

Friday, October 11, 2019

TrashTeg, The Chronicles; Part 4: Home Depot Racing Sway Bar


Introduction

The Integra and Civic chassis that Honda produced from the late eighties to the early 2000s were set apart from average FWD cars because they could handle well out of the box.  With modification, they could handle even better.


One common problem with FWD cars is understeer.  Because the front wheels are doing the accelerating, turning, and the majority of stopping, the tires tend to "fall off" sooner than their RWD counterparts.  To combat this, FWD race car builders increase the chassis frequency, or "stiffness," of the rear of the car using sway bars or stiffer springs.

Photo of Chelsea the Civic Dog Legging by WindShadow Studios

In this post, readers will see how EJ2 Track Rat was able to create a low-budget solution for drivers looking to increase rear roll stiffness via use of a stiffer sway bar in the rear of the car.

Background

Alex's TrashTeg was driving fairly well.  He was able to pass competition school with NASA Northeast in it and he learned a fair amount about racecraft during the course of the season.  He was also having a ton of fun.  However, Alex was beginning to realize the limits of his budget-built car-- Partially because his car had too much dive, squat, and roll under braking, acceleration, and cornering, respectively.

Photo of TrashTeg Leaning by WindShadow Studios

When TrashTeg was first built, it had the following setup:
  • 205 Toyo RRs 
  • At a ride height of ~5.5-6 inches 
  • With a front spring rate of 650 pounds/inch,
  • Rear spring rate of 750 pounds/inch,
  • No front sway bar,
  • A 25 mm GodSpeed (eBay) rear sway bar,
  • And some Koni Sports he got for free from our friend Anthony
Our goal was to increase the roll stiffness of the car while still keeping the car controllable at the limits with a healthy amount of rotation in corners.  We had two options: increase front and rear spring rate, with a stiffer rear spring rate than front, or increase front spring rate and throw a big rear bar on.

Since I only had a pair of 800 pound/inch springs in my garage, we figured we'd throw the 800 pound/inch springs up front, and increase rear roll stiffness without springs.  The easiest way to do this is with a bigger sway bar, which A-Spec Racing (ASR) makes.  Their 32 mm hollow bars come in different thicknesses and since they're hollow, they have the advantage of less weight vs. their solid counterparts for the same amount of torsional resistance.

ASR Hollow Rear Sway Bar Kit

However, ASR bars are not cheap at ~$500 for a full kit and Alex had already purchased a $300 eBay sway bar kit.  He wasn't about to spend $500 more for the ASR product as a result.  But, he and I were both interested in doing something creative.

Getting Ready for some "Creativity" with a Welder

A while back, I saw a thread on a forum where a Miata driver welded additional metal to his/her sway bar to increase torsional resistance, thereby increasing chassis frequency at the respective end of the car.  

Much debate was had on this thread-- specifically whether one can weld to a sway bar and expect it to work because sway bars go through a forging process that allows them to become "spring steel."  Spring steel is highly malleable, but returns to the shape it was bent from fairly easily.  Welding to spring steel changes that property and increases brittleness.

Example of a Cracked Sway Bar (Not Ours)

Doing the Deed

Since we don't care about armchair engineers and we buy parts for our destined-for-doom race cars on eBay, we decided it'd be worth a go to attempt something similar.  The new setup would have the following changes: 
  • Ride height lowered to 5" at pinch welds
  • Front spring increased to 800 pounds per inch
  • A "custom" xxx mm solid rear sway bar, courtesy of the plumbing aisle at Home Depot
 We started by purchasing some steel black tubing with an inner diameter of 1" and a wall thickness of 0.133" for about $20.  A 1" inner diameter equates to 25.4 mm which is only slightly larger than the OD of our eBay sway bar.  

Our plan was to cut this bar to length so that it would fit between the pillowblocks that mount the sway bar to the subframe.  Then, we would cut the bar in half, length-wise, and weld half of the Home Depot pipe to the sway bar.  This would result in a solid sway bar with a diameter of ~28 mm.


Sway Bar Diagram from ASR

Our Plan from EJ2 Track Rat

We laid out the eBay sway bar after purchasing the pipe from Home Depot and we started by measuring where our addition would be and how short we'd need it cut.

Laying Out the Sway Bar

Next, we cut our Home Depot pipe to length using a cut-off wheel.  Ideally this would be done with a band saw, but with a pipe-vise it's easy to do with a $30 Harbor Freight cut-off wheel.  The cut just isn't as clean.

Alex Cutting Home Depot Pipe to Length

Next we cut the pipe in half, lengthwise using our cut-off wheel and our old school bench vise from eBay.

Cutting the Home Depot Pipe in Half Length-Wise

To weld our cut-off half of the Home Depot pipe to our eBay sway bar, we would need to first clamp the OD of the Home Depot bar to the sway bar.  After grinding the surface of the Home Depot pipe and the sway bar clean, we clamped the Home Depot bar to the sway bar using a set of Milwaukee vise grips.

Half of a Home Depot Pipe Clamped to an eBay Sway Bar

I ran a bead across a section to the left and right of the vise grip, then moved the vise grip down the length of the sway bar and repeated the process...the entire thing was done with flux wire.

Close-up of Beads Ran Next to Vise Grip

The entire bar welded up looked amusing, to say the least.  It really was also great practice for welding.  I needed some, so this was of benefit to me.

Picture 1 of Welded Sway

And Picture 2...

Finally, we sprayed the bar gloss black and mounted it onto the car.  Once on the car, we checked to ensure clearance between our modified bar and the subframe brace was satisfactory.

The Bar Mounted to the Subframe

Checking Fit with Bar at Full Droop

Checking Fit with Bar at Full Compression

And after installing the rear bar, we installed my front springs and manually set ride height as we always do-- the LoBuk way.

Alex Setting Ride Height to Clock Bushings

Another View of Alex Setting Ride Height to Clock Bushings

Impressions

Alex tested TrashTeg at Watkins Glen in October of 2019 with NASA NE to see how the changes improved the car.

Alex Suiting up for a Race at The Glen

On Track, he noticed sharper turn-in due to the stiffer front springs, but the larger rear sway also allowed the car to have less mid-corner push.  The new sway bar we created held up for a full weekend of abuse at one of the best and most demanding tracks in the Northeast.

After our racing shenanigans on Saturday we attended a NASA Northeast BBQ and had a good time.  The car held up, the mods made it faster, and we had a great time.

Me, Alex, Jeremy, and Yuko at the NASA NE BBQ

Until next time, thanks for reading!

Tuesday, April 30, 2019

#TrashTeg, The Chronicles; Part 3-- DIY Racecar Seat Back Brace

When we last left off regarding #TrashTeg, we discussed safety upgrades before an HPDE event.  In this blog post, we're going to narrow the scope a bit and talk about some specifics-- specifically regarding the seats.


Recall that the seats we used in this budget, to-be, Honda Challenge H4 race car, were found on Craigslist for an extremely cheap price due to their condition and age.  We paid ~$150 picked up ~30 minutes from home.


While the condition of the seats won't win any car shows, we don't care because we're racing the car.  However because the seats are old, their FIA certification has expired.

When doing HPDE or track days with the National Auto Sport Association (NASA) or other clubs, this may be okay as long as the car passes other safety rules.  However, wheel-to-wheel racing is a different story.  If the FIA certification is expired, the seat must be reinforced to ensure the seat back doesn't snap on impact.  To solve this problem, enter the back brace.


A seat back brace is intended to prevent excess movement of the seat forward or backward in a crash.  This ensures that the driver stays in the same spot, the harnesses do their job, and the driver is unharmed due to whiplash or other injury caused by sudden, harsh movement.  To read more about seat back braces and why they're useful, see this article by IO Port Racing.


Since our Integra was being converted from an HPDE car with a roll bar to a race car, one thing (among many) we needed to add was this seat back brace.  

The IO Port back brace is what we used, not because we're sponsored by them (I wish), but just because it's what we happened to order from them.  The kit comes with everything you'll need.  The picture below shows the contents of the kit and what purpose the components serve:


To begin installing our new brace, we first stripped the pristine fabric off of our God-knows-how-old years-old seats.


Lifting back the foam, it was easy to see where we could drill into for our new brace.


Next we began bolting things together.  In the labeled picture of the seat back brace above, you'll notice that the tube that transfers load from the seat to the cage in the event of a crash is secured to the cage with a two-piece, machined block of metal.  The top half of this block bolts to the cage and the bottom half bolts to the tube that transfers load.

We loosely bolted this onto the cage first.



Next, we grabbed our load transfer tube shown below:


And we inserted it into the bottom part of the machined block which we had loosely attached to the cage.  After doing this, we tried our best to center the bracket on the middle of the seat.

You'll notice that seat-back bracket was flat but the seat was curved.


To remedy this we needed to intervene, bending the soft aluminum with a vise and a hammer.  While in the vise, we also drilled the holes for the seat-to-bracket mounting hardware.  

Note that in the NASA Club Codes and Regulations (CCR), the mounting hardware facing the back of the car's driver must be flush with the seat, not protruding.  IO Port includes allen bolts which preclude any potential conflict with this rule and also provide for additional safety.



With the bracket bent to the profile of the seat, we centered the bracket with a whiteout marker and marked where the seat needed to be drilled.



Then, we secured the bracket to the seat using the provided hardware from IO Port.  On the side of the seat facing the racer's back, we used allen bolts with rounded heads as previously mentioned.  On the side opposite the racer's back, IO Port provided us locking nuts to use.


With the seat back brace secured to the seat and all other components loose, we finally began securing all other components which would bring us near completion.

The diagram below shows the order of final installation.  First, tighten the back brace-to-load transfer tube bolts.  Second, tighten the allen bolts securing the main block to the cage.  Third, drill a hole in the load transfer tube and insert your cotter pin:


With the back brace fully installed, we finally put the fabric back on our seat and concluded our install.  The fabric is easy to install back onto the old Corbeaus.  It has an elastic band that allows the fabric to stretch around the contours of the seat and tighten once past the edges.


Detailed photos of the installation are shown below:



On May 3rd, my friend Alex is going to New Jersey Motorsports Park with NASA Northeast to participate in Competition School for his provisional license and hopefully begin racing with the Honda Challenge H4 crew.

Image may contain: car

If you wish to attend one of our events, reach out to me in the comments section and I can get back to you ASAP!

Thanks for reading! --Track Rat

Tuesday, April 9, 2019

#ChelseaTheCivic, Part 4: Budget Race Car Aerodynamics

How it All Began

As I mentioned in my last post for this build, I was in a rush for my previous season.  My time was spent fighting understeer issues, improving the reliability of the chassis, and navigating financial dilemmas.  With that being said, I didn't have aero as I knew it would cost money and take up time.  Instead, I focused on affordable suspension improvements.

This Article Discusses Installing Budget, DIY Aero for Your Racecar

Using my used eBay pyrometer and some strings, I was able to dial in my alignment based on tire temperatures.  

Soon-to-be Spec E30 Driver TJ and Alex Helping me With Tire Temps

Speaking with my friend Spencer I was able to experiment with used race springs on eBay to adjust spring rates.  Spencer also turned me onto the sway bar setup I needed and my friend Alex, the owner of #TrashTeg, turned me onto deals to save me money on the sway bar setup.

Cheap, 800 lb/in, No-Name, eBay Springs

The NASA Northeast Competition School Director, Brian, is also a Honda Challenge driver, and through him I was able to determine which bushings were the most important to upgrade from rubber to spherical, rather than replacing all of them.  Of course, Chris at Kingpin sold me the product I needed on closeout when he was trying to move product and this saved me money as well.

Best Bearings in the Business

During the off-season, I had a long list of upgrades and reliability and driveability improvements I needed to make to the car.  One of them was to add a front splitter and a rear wing.

Rear Downforce

Honda Challenge H4 cars are not that fast.  The speeds are on-par with Spec E30 and Spec Miata which both use stock-spec engines and share the same suspension setups for the most part.  As a result, I knew that I didn't want a lot of drag.

People put rear wings on these FWD Hondas because it stabilizes the car in traffic (starts/restarts especially) and under braking-- two areas which are critical to laying down some fast laps and beating your competition.  The rear wings also serve to stabilize the car in high-speed corners where suspension setup is less important than in low-speed, tight corners.

Carlos Valenzuela Driving a NASA SoCal Honda Challenge H4 CRX with Aero

The rear wing needs to be balanced with a front splitter, but we'll get to that at a later point in this post.

The best wing for my car would fit the following criteria:

A.) It's cheap
B.) It's small
C.) It works
D.) It's cheap

With that being said, i turned to my most trusted source for parts that work and are cheap: eBay.

eBay is full of cheap aluminum wings that are both light and functional.  They may not be custom-made for your car, designed using CAD/CAM software, made of fancy carbon fiber, or have baller hardware, but for my purpose they would be perfect.

An eBay Wing Can be Had for Relatively Cheap

When I made it known that I was considering one, my friend, also a Honda Challenge Racer, Zephyr messaged me and told me he had an eBay wing from his old CRX race car that he would give me for free.

Zephyr's Old Race Car

The wing was perfectly sized for H4 as it's big enough to stabilize the car, but not big enough that it would considerably slow me down in the straights.  So, I mocked it up to get an idea of where it would sit.  

There were several factors I had to consider when fitting the wing.

Honda Challenge H4 rules state that the wing must be within the outline of the car's body when viewed from above, for one.  

Secondly, wings generate more downforce when placed further aft of the chassis where they have better access to clean air.  This second factor was something I gleaned from leisurely reading about race car aerodynamics.  I'm sure there are exceptions to this assumption.

A Civic with a Legal Honda Challenge H4 Wing

I used a tape measure along the sides of the trunk, a chalk marker to mark where I wanted the centerline of the wing to be, some blue painters tape to ensure I didn't have a crooked reference line for mounting the wing, and a plumb bob to ensure my wing was within the legal limits stated above.


Using Chalk Marker to Make a Reference Line for a Non-Crooked Wing

When measuring to see if the wing is within legal limits, you must use a plumb bob.  If you don't have a plumb bob, tie a nut to some kite string from the Dollar Tree.  And use that.  The point isn't to be fancy, it's to be fast.

A Picture From YouTube

Gravity is more accurate than the human eye.  The pictures below illustrate this.  It seems as though the wing is sitting just at the edge of the chassis.  In reality, the wing is moved further forward than this by a considerable amount to ensure legality.


Viewing the Wing From Above

Next, I went to Home Depot and got the cheapest hardware I could find to attach the wing to the trunk.  With each wing stand having six holes each, I knew I needed 6 x 2 = 12 bolts, 6 x 2 = 12 nuts, and washers for each nut/bolt on the outside and inside of the trunk (24 washers).

This was $20.

Home Depot Sends E-Receipts if You Provide Your Email-- a Very Useful Way to Track Build Costs

With the wing mocked up in its appropriate spot, I marked where I needed to drill and began putting holes in my crusty, 1993 Honda Civic trunk.  


Wing Stands With Galvanized Bolts and Washers Inserted

Then, I opened the trunk and cut away the reinforcement structure in the areas where the bolts protruded.  This would allow the bolts to sit properly (not crooked) in their holes and it would also allow access to someone with a wrench.

Inside of the Trunk

In the picture above, you'll notice that there are black plates underneath of the nuts and washers.  These black plates are made of steel and are intended to reinforce the wing to ensure it meets objective "C."


These black, steel plates are made from spare oil pans I had laying around my garage.  These oil pans do not sell for much used on eBay and the steel is too good to waste.  If you have a vise with an anvil head and a sledge hammer you can easily straighten the metal out where it was stamped by the OEM to make a straight piece of sheet metal.  I did something similar when mounting my MSD ignition.


Next, I knew I needed to set the angle of attack for the wing. The angle of attack, in laymen's terms, is basically how aggressive the wing sits with respect to the wind.  If it has more angle, it makes more downforce, but also more drag.  If it has less angle...well, the opposite happens.  Below is a picture of an airplane wing.  You will see that the angle of attack is measured between the wing and the air coming toward it.  Don't pay attention to any of the other terms in the diagram for now.

Angle of Attack on an Airplane Wing

My goal was to have an adjustment from close to 0 degrees to something more aggressive. While this was a loose set of criteria, I was concerned the wing would have a negative angle of attack since the stands were not made for my car.  This would make LIFT in the rear-- the opposite of what I wanted.

To measure the angle of attack, I first placed a level on the door sill for the driver-side of the car and measured the angle relative to the ground using an app on my iPhone.  There are a ton of apps out there that perform this function and if you're a DIY car person you must own one.

Next, I placed my cell phone on the wing and measured the angle of attack at the lowest setting for aggressiveness.  I got 2 degrees!  Not bad.  This meant I had plenty of adjustment if I found I needed more rear downforce at some point.  If you'd like to see more about this, just check out the video I referenced below:



Setting Angle of Attack on a Race Car Wing

With the wing fully functional, I decided I'd give it some love and paint it black as well.  I purchased four cans of budget paint from Home Depot for a total of $4 and with some 220 grit sandpaper I had laying around, I went to work.

The Wing Sprayed Black

Here's the wing installed:



Front Downforce

Balance is a virtue-- it's one of the valuable qualities for any relationship, the best diet, and of course, the fastest car.  With rear downforce only, the car may understeer in high-speed corners, though it may be more stable.  The key to a fast car isn't one that understeers, or even one that oversteers, the key to speed is balance.

Stu Chasing Zephyr at New Jersey Motorsports Park

To balance out the rear wing on the Civic, a front splitter is needed.  A front splitter increases the pressure on the front of of the car using air pressure differentials.  High pressure air goes over the car and low pressure air goes under the car.

Read More About Front Splitters Here

Using Krider Racing's writeup in Speed News, the National Auto Sport Association's magazine, I was able to amass the basic supplies needed for DIY splitter fabrication.  However, I incorporated my own twists based on my needs and my resources.

Krider Racing, of NASA SocCal, and Their Acura Integra

One twist was in how I transported my 17/32-inch-thick, 8-foot-long piece of plywood a short distance from Home Depot to my garage in a Chevy Tahoe.  This is the LoBuk, Honda Challenge H4 life:

17/32-Inch-Thick Plywood and Garden Edging

Loading an Eight-Foot-Long Piece of Plywood Into a 99 Tahoe

I then borrowed four saw horses, a dual-orbital (DA) sander, a jig saw, and a router from my friend Anthony and got to work.  I started by placing the large piece of plywood on the saw horses and taping my front bumper to the plywood.


Most People Don't Tape Bumpers to Wood But I'm a Car Person and I'm Special

Per H4 rules, the splitter cannot extend past the outline of the car when viewed from above, much like the rear wing.  So, again, we use plumb bobs to account for this factor.  The plumb bob is moved about the front of the bumper and marks are made along the perimeter so you know where to cut.


Using a Plumb Bob to Draw a Splitter Pattern

Additionally, the rear of the splitter cannot extend past where the front wheel wells begin.  Luckily, I dealt with this last year when I made an under tray out of corrugated plastic yard signs courtesy of fellow H4 Racer and friend, Ken, Owner of Ken's House Wash.  I simply marked where I needed to cut the rear of the splitter based off of the under tray I made for last year.

Undertray Made From Corrugated Plastic

Then, with my friend Alex I began cutting the splitter using the jigsaw Anthony gave me.

Me Cutting Plywood with a Jigsaw

We then used the router to round off the edges of the splitter.

Alex Attaching a Router Bit to Anthony's Router

With the splitter cut and sanded down, we mocked it up underneath of the car to see how it would look.

Splitter Under Civic

Next, we needed to mount the splitter to the car.  There are a couple of trick methods for this. For example, Special Projects Motorsports sells the Kiwi Splitter Brackets.  These brackets are quick-release and are half-aluminum, half-steel.  The steel part mounts to the frame and the aluminum part mounts to the splitter, so if you crash, the frame doesn't bend-- the aluminum brackets do.  Additionally, the quick-release is super easy to work with and most racers in Honda Challenge love them.

Kiwi Splitter Mounting Brackets

However, this car is a budget build and we don't have $198.00 to spend on splitter brackets.  That money is much better spent on suspension upgrades or reliability upgrades.  So, I used some brackets that a friend, and also fellow H4 Racer (see a trend?), Carlos gave to me.

Carlos's Two-Piece Splitter Brackets

Carlos made these brackets for the EF/CRX chassis.  The brackets are intended to mount to the frame rails where the tow hooks are originally located.  However, the EF and the EG/DC Hondas have their tow hook mounts positioned differently relative to the ground.  The EF tow hooks sit higher, and as a result I had to remove the middle section of the splitter brackets circled below:

Where I Had to Modify my Friend's Brackets

The next thing I did was add capture nuts to the brackets.  I knew I didn't want to mess around with two wrenches in a cramped space in the engine bay, so I welded some metric nuts from Home Depot that share common Honda diameters and thread pitches.  

I always try to add redundancy to the car in this manner so that if a bolt strips, breaks, or gets lost somewhere on the chassis, there is another bolt to replace it.


Capture Nuts Welded to Carlos's Splitter Brackets

I then mocked up these new brackets on the splitter, relative to the chassis, to drill holes.


Mocking up the Splitter Brackets to the Splitter


Next, I began attaching the garden trim to the splitter.  There are two trims that need to be attached.  The first is a stout, short trim that mounts to the splitter with course screws (#12 X 3/4 wood screws).  

It serves as the base for the taller garden trim which I secured to the shorter trim with nuts and bolts.  Below you will see the first stage, securing the stout, short trim to the splitter with course screws:

Short Garden Edging Secured to Plywood with Course Screws

Then I took garden edging and drilled holes at equal lengths along the its perimeter and secured it to the garden trim using SAE nuts, metal screws, and washers that you can find in any hardware aisle for about $10.  Another option is to use long rivets, but these are harder to find.

The picture below shows me sanding the fake wood grain out of the trim because wood grain only looks good on luxury cars.

Sanding the Fake Wood Grain Out of the Garden Edging

After sanding the garden trim and splitter blade, I cleaned with acetone to remove any dust or dirt which would interfere with paint adhesion.


Prepping Surfaces for Paint

And finally, I laid down a solid base coat of flat black which acts as primer (a trick I learned from an OG) and once that was dry, I laid down two coats of gloss black.  Again, I spent $4 on the budget spray paint that Home Depot sells.  Regardless of paint quality, it came out pretty good-- serving the old adage that it's all in the prep work.

Painted Splitter

Here are some pictures of the finished car with aero: