Showing posts with label EJ2 Track Rat. Show all posts
Showing posts with label EJ2 Track Rat. Show all posts

Tuesday, December 10, 2019

EJ2 Track Rat Starts a YouTube Channel!

Over the course of this off-season (at least in the Northeast), you can expect EJ2 Track Rat to be doing some new and innovative things.  For example, EJ2 Track Rat was recently featured on Garage Heroes in Trainings' Podcast.

Working on the Capri
The Garage Heroes in Training Being Garage Heroes

Well, EJ2 Track Rat has created its own YouTube channel with its first video.  The video is already gaining traction as a popular video among the high performance driving and racing community.  

It is entitled "5 Things You're Doing Wrong in HPDE and Track Days"

EJ2 Track Rat's First YouTube Video

When you get a chance, take a look.  There's some great information on common mistakes made by drivers at all levels in the sport.  Feel free to like, subscribe, and comment on the video, or leave your opinions on this blog post!

Thanks for reading.

Saturday, September 28, 2019

Analysis of 2019 NASA Champs Honda Challenge H4 Race with RaceHero

Introduction
Racing is a data-driven sport.  Regardless of the money or car you have, it's possible to make educated decisions on setup changes or tweaks to driving style by using hard work and commitment.  However, without understanding the craft of data analysis, hard work and commitment can often lead to dead ends.

Burning the Midnight Oil with Crew Members Kelley and Andrew at 2019 NASA Championships

In this article, EJ2 Track Rat will show readers how "free" lap analyses from RaceHero can be used to go faster in a race.

RaceHero Logo

How it Works

RaceHero is a free service that shows the provisional lap times, positions, and announcements for races and time trial events with many organizations such as the National Auto Sport Association (NASA) or the Sports Car Club of America (SCCA).

Racers or high performance drivers put a transponder on their car and their racing info is transmitted to this website for the sake of reviewing provisional results.  While the data on RaceHero is not official data used for prizes or points, it is extremely useful since racers can see their own data and and their competitors' data.

Overall Position on Y-Axis, Lap Times on X-Axis

Fast Lap Times

Throughout the weekend, I was keeping an eye on my lap times relative to my competitors'.  I was up against some stiff competition from the West Coast including National Champion, Robert Krider and his teammate, Keith Kramer of Double Nickel Nine, as well as my good friend Carlos Valenzuela and Steve Peterson of Team Beans and Dog Racing.

These Guys Mean Business!

During practice on the first day, with the help of my Crew Chief, Andrew, I made changes to the car after every session.  I did not run my transponder for the first two sessions of five, but I did run it for the third, fourth and fifth sessions.  During the third session, I was about 1.5 seconds off of the leader, Robert Krider with a best lap time of 1:46.882 vs. his 1:45.338.

Results from Session 3 Practice

By the end of the day, Krider had improved by ~0.3 seconds relative to my times.  This suggests my competitor was able to make a significant change to the car's performance or to his driving style which would make my job harder for the weekend.  Regardless, this analysis prepares one to look for more time in more places-- i.e. work harder.


For the first qualifying session, Team Beans and Dog switched drivers from Steve to Carlos and laid down a flyer.  Of note, additionally, was the overall drop in lap times for all competitors, suggesting that the track was "getting faster," providing more grip for drivers.  This is due to cloud cover, ambient temperature, and humidity per experience.


As the day went on, track conditions became further quick as suggested by another overall drop in lap times.  While I wasn't gaining significant ground on the leader for qualifying, I was maintaining a steady deficit utilizing car changes to keep up with a stacked racing team.  In Qualifying #2, again, I was in 4th, but the results were slightly different, running my fastest lap thus far.


Race Analysis

There were two races during the Championship Weekend-- one was a qualifying race and one was the main event for the podium.  

Standing in 3rd on the Podium Against Reigning National Champ team Double Nickel Nine

During a race, the fastest lap time matters, but what matters more?  The sum of the following matters more:

1.) Traffic management

Managing faster or slower, out-of-class cars passing without significant loss in speed/position are facets of good traffic management.

2.) A good start

Avoiding jumping the start which would result in disqualification, having impeccable reaction time when the flag drops, and deciding when to pass or bump help for a good start.

3.) Car/driver consistency

If the driver cannot maintain their level of performance throughout a race due to a lack of cardio or mental conditioning, they will fall off in speed.  If the car is not set up to make the tires "happy," the car will fall off in speed.  A combination of the two is key.

4.) Flag management

You can be leading a 45-minute race for the entire time.  But if you pass just once under a yellow, you will be disqualified.

5.) Defense

How to stop a faster in-class car from getting around you.

6.) Offense

How to pass an in-class car from behind and make it stick.

RaceHero can be used to measure all of these things-- whether one at a time, or collectively.  For example, a good start would be suggested in part by a good lap time for the first lap relative to competitors or a large gain in position.  Car/driver consistency can be gauged by a drop or lack thereof in lap times over the course of the race.  A defending driver may maintain position in front of an in-class car with a faster best lap time.

Photo of #ChelseaTheCivic Leaving the Keyhole at Mid-O (Photo by Herb Lopez of @DriveNASA

For race analysis, I typically take all of the RaceHero data I can get for my competitors and put it into an Excel Sheet like a true engineer would.  Below you will see that I copied all lap times from RaceHero, converted them to total seconds to make it easier for Excel to analyze, then I measured standard deviation of hot, green laps (not first or last lap...no standing yellow laps) and put it in a table:

Getting my Data Nerd on

For the first lap, it's clear that I had a very good start.  I decided to bump Kramer whose start was not as good to keep Steve on my inside while Ken had the best start of all of us, getting the jump on Keith, Steve, and myself to second place.  

However, leading into China Beach, Ken was passed back by both Keith and I with Steve still in tow of Ken.  The rest of the first lap was a game of traffic management.  All of these factors lead me to the second-fastest first lap time.  However, with nearly a 20-HP deficit to my competitor Krider, a better time would have been difficult to achieve:

Starting Lap Times

Next, we'll look at the beginning laps of the race.  In the beginning laps of the race, it's important to play offense, attempting passes on your competitors while the tires are still fresh.  It's also important to get by slower out-of-class traffic as quickly as possible.  During this portion of the race, heart rate and adrenal release should be highest.

Photo by Herb Lopez of @DriveNASA

Below you'll see a graph of overall lap time in seconds vs lap # for Steve, P4 and myself, P3.  For the first half of the race I laid down a killer start and close to the fastest lap I could for my second lap.  After that, variation in lap time was caused by out-of-class traffic.  However my good start allowed me to maintain a comfortable lead:

Analysis of Race Start

In the middle of the race, I try to conserve my tires as best as possible so I can lay down flyers at the end of the race.  This is also clearly noticeable in the next graph I'll show below.  What's important to remember is while you're saving your tires, your competitor in the spot behind you may be catching up.  This was exactly the case as Steve, in his lightweight CRX began to close the gap:

Mid-Race Analysis

By the end of the race, one may note that Steve and I were running very close times.  Keen eyes will also observe that Steve's fastest overall lap time was somewhere near 1 second faster than my fastest overall lap time, suggesting this driver/car combo had more speed than I.  This makes sense because by the end of the race I was driving as defensively as I could within racing rules.  It's important to avoid blocking or other foul play when employing proper defense, but it's also important to maintain position, obviously.

End-of-Race Analysis

Driver and car consistency among the pack will lastly be analyzed.  To do this, we look at standard deviation and average lap time per competitor.  Any laps with yellow flags, red flags, restarts, and aborted starts are thrown out.  Additionally, we do not consider starting and finishing lap from RaceHero when calculating these statistics.

Since this is averaged over the entire race, this heavily favors analysis of driver consistency over car consistency.  Car consistency is better analyzed in segments as shown above.  However, car consistency is a variable feeding into this analysis.

Overall Race and Consistency Analysis

As shown above, Steve and I had the best consistency over the course of the race (+/- 0.80 and +/- 0.69, respectively).  We had an awesome, clean battle that ended up with me in P3 and Steve in P4.  The race video is here:


Champ Race Highlights

Thanks for the read, all.  Looking forward to my next blog post.

Monday, October 29, 2018

#TrashTeg, The Chronicles; Part 2-- Safety Gear

#TrashTeg, The Chronicles; Part 2-- Safety Gear

When EJ2 Track Rat last left off regarding the story of #TrashTeg, we touched on how we got this free car from Delaware to Philadelphia and we touched on how we made it run with a distributor cap, spark plug wires, spark plugs, and some water in the radiator.

In this next part, we'll talk about how we stripped the car down and installed some safety gear.

Figure 1: Alex at New Jersey Motorsports Park Shaking Down the Teg After we Built it

Since my Civic was being converted into a race car, I no longer needed the roll bar that I installed for high performance driving education (HPDE) and street driving.  I was installing a cage, and the car was no longer going to be street-driven as this is required in wheel-to-wheel racing.  However Alex was building a track car and it's never a bad thing to have additional safety.

Figure 2: The Roll Bar Previously in my Civic

The National Auto Sport Association's Northeast Region typically informs new drivers that the most important mods one can make to their car are in the form of safety upgrades.  A useful acronym to keep in mind when doing safety upgrades was originally coined by our HPDE 1 Instructor, Enrique, and goes as follows:

S-H-H 
AKA 
"SHH! STOP BUYING CAR PARTS AND GET ON TRACK!"

Figure 3: Rally Armor Mud Flaps Look Great but Don't Make You Safer

AKA (for real this time)
SEAT.  HARNESS.  HANS.

Figure 4: A Driver Strapped Into a Seat with a Harness, a Hans, and (in This Case) a Roll Cage

Hans is a popular model of "head and neck restraint" which is used in combination with your harnesses and your helmet to prevent whiplash from occurring in a high-velocity frontal accident.

Figure 5: How a Hans Device Works

A roll bar is used to prevent rollover damage to the driver's person, but it is also used as a mounting point for the harness.  Other options out there include harness bars, but these are not recommended as they have been known to buckle inward in the event of a forward collision.

Figure 6: Bent Harness Bar in 8th Gen Civic on Frontal Collision

The safety components mentioned above are meant to work as a system and using harnesses with your stock seat, or a regular Hans with your 3-point factory belt are not recommended.  I've done tech with NASA since 2016 and we always prefer a stock car to roll through over a car with improperly installed harnesses, roll bars without padding, and/or 3-point seat belts over fixed-back, bucket seats.

The simplest rule?

Before heading to a track day, always review the rule book and reach out to the officials for help when you are in doubt.  Ask for help and ye shall receive it!

Figure 7: A Car with 4-Point Harnesses Not Intended for Use with Stock Seats

Once we got the roll bar removed from my Civic, we had to begin prepping the interior of Alex's Integra, the #TrashTeg.  To start, we stripped all of the interior out of the car.  The major interior items that needed to be removed were:

The carpet
The seats
The center console
The seat belts
And the headliner

Figure 8: Interior of the Trash Teg

Next we removed the sound deadening from the car.  Sound deadening is found in most passenger cars in various areas around the chassis-- most notably the floor and transmission tunnel.  It is used to dampen vibrations and suppress road noise transmitted from the tires to the driver, but we don't care about noise and comfort in racing!  We care about going FAST.

Figure 9: Ricky Bobby

Sound deadening removal can be long and tedious or quick and easy depending on the fanciness of your car.  For example, my Civic's sound deadening came up on its own with some snow, a hammer, and a chisel (we did it outside).

However some cars have thicker, better quality sound deadening that requires more convincing to come off.  A common technique is dry ice.  For our project, we used about $20 of dry ice from a beer distributor.  However, a low buck method to remove sound deadening for people who have a winter season is to leave the race car out in freezing, cold weather overnight and knock the sound deadening loose in the morning.

Figure 10: Sound Deadening Removal with Dry Ice, a Mallet, and (Maybe) a Chisel

Given that this car was sitting in such rough conditions for such a long time (outside, not moving, when it did move it was driven and worked on by a sub-par mechanic), the sound deadening wasn't too hard to remove.  Alex and I got it all up within about 1.5 hours.

Figure 11: Our Tools we Used for Removal of Sound Deadening

Figure 12: The Trunk Area without Sound Deadening

While it was great for sound deadening removal, the neglect this car was put through was not good for much else.  When we pulled the carpet, we discovered that a significant amount of rust had eaten through one of the areas of the floor where the roll bar was supposed to mount to.

Figure 13: Passenger Side Rear Passenger Footwell with Rust

Alex and I took an old welder that had stopped working in his garage, we cut it up for scrap metal, pulled the wires for electronics spares, and salvaged whatever else we could before leaving it out on the Northwest Philly streets for scrappers.  With that same metal, we welded up a patch in the floor and removed as much of the rust we could.  Given that we had just started at welding, we didn't consider our work too shabby (though it could use improvement).

Figure 14: Shabby but Functional Welds on Alex's Floor Pan

After getting the roll bar installed, Alex then needed a pair of seats-- one for the driver and one for the instructor.  For HPDE I always recommend having a second seat.  You're not worried about the extra weight an instructor will gain you because you're not trying to win, but you'll also likely learn more from the right-seat advice.

Figure 15: Even Seasoned Racers Benefit from Good Instruction

Originally, Alex was contemplating spending major coin on these racing seats, but I told him that for HPDE we could use some cheap fixed back seats and be compliant with the rules.  Additionally, if he ever decided to go racing, when the cage got installed in the car, we could brace the back of the seats to the roll cage harness bar and still be legal!

Figure 16: Back Brace Used to Reinforce Back of Fiberglass Seat to Roll Cage Harness Bar

After some discussion, Alex and I set out to find some cheap seats on Craigslist, quickly coming up with an ad for some old Corbeaus that used to be in a Mustang.  The seller listed the seats for $200 but Alex ended up scooping them for a smoking deal of about $140.

Figure 17: These Seats were Intact and Ready to be Used

For brackets, we utilized the high quality, OEM seat rails, and $35 worth of steel bar stock with some spare hardware for the materials.  We cut the steel bar stock into four separate 18-inch-long pieces and mounted one at the fore-end and one at the aft-end of the OEM seat rails, securing them with spare hardware.  We then bolted the seats to the bars with the same said hardware.

Figure 18: Two Pieces of Bar Stock for Each Seat

Figure 19: Spare Hardware Used to Mount Seat to Bracket and Bracket to Sliders

Figure 20: Side View of Seat Mounted in Car

After we installed the seats, we had two last items to install-- the harnesses!  One of the harnesses, like many of the parts in Honda Challenge, was handed down to me from one friend, Anthony.

Since I didn't plan on having a passenger seat while racing initially, I gave Alex this spare harness so he could build his #TrashTeg.  Alex then bought a second harness of his own and some hardware to keep the driver and passenger safe.

Figure 21: G-Force Racing Harnesses and Associated Hardware for Install

With all of our gear laid out, we went to work getting alex seated in his ideal position for driving.

Figure 22: That Awkward Moment when You're Too Fast for Anything in Life

Once you have the seating position, the install for the harnesses is pretty much done by the book.  When I install harnesses on vehicles I'm working on, I typically use the Schroth Racing installation guide which can easily be found on their website.  A quick link to the PDF can be found here as well.

Figure 23: Drawing from the Schroth Racing Website's Guide Showing Proper Vs. Improper Harness Mounting Angles

As shown above, there is a given range of angles the installer must adhere to to make the system safe for the driver.  This is why it is imperative for the driver to be in their desired position when installing their harnesses.  It allows them to have control over where the lap belt mounting points need to go and if a cage is being welded in the car, the cage builder has a reference for a good harness bar height.

Lastly, in the picture below, note the metal collars that are on the harness bar.  These collars are on the roll bar to prevent the harnesses from sliding to the left or the right in the event of a frontal collision.  A simple and cheap, alternative solution to using these collars is roll bar padding foam or even generous amounts of duct or electrical tape.

Figure 24: Picture with Collars Circled for Reference

The final product was not beautiful, but it was safe and functional-- a good race car's desired state.  Check out some pictures of the final product below:


Figure 25 and 26: Passenger Seat with Old Harness from My Civic

Figure 27: Driver Seat with New Harness

Figure 28: Stock Steering Wheel with Air Bag Removed for Track-Only Safety (Remember, All Safety Components Act as a System)

Figure 29: View from Rear of Car Showing Newly Installed Safety Gear

In the next installation of #TrashTeg, you can expect to see regular maintenance activities that are good to attend to before hitting the track as well as some other minor changes.

Thank you for reading and keep coming back.




.