Showing posts with label Track day. Show all posts
Showing posts with label Track day. Show all posts

Tuesday, December 10, 2019

EJ2 Track Rat Starts a YouTube Channel!

Over the course of this off-season (at least in the Northeast), you can expect EJ2 Track Rat to be doing some new and innovative things.  For example, EJ2 Track Rat was recently featured on Garage Heroes in Trainings' Podcast.

Working on the Capri
The Garage Heroes in Training Being Garage Heroes

Well, EJ2 Track Rat has created its own YouTube channel with its first video.  The video is already gaining traction as a popular video among the high performance driving and racing community.  

It is entitled "5 Things You're Doing Wrong in HPDE and Track Days"

EJ2 Track Rat's First YouTube Video

When you get a chance, take a look.  There's some great information on common mistakes made by drivers at all levels in the sport.  Feel free to like, subscribe, and comment on the video, or leave your opinions on this blog post!

Thanks for reading.

Friday, October 11, 2019

TrashTeg, The Chronicles; Part 4: Home Depot Racing Sway Bar


Introduction

The Integra and Civic chassis that Honda produced from the late eighties to the early 2000s were set apart from average FWD cars because they could handle well out of the box.  With modification, they could handle even better.


One common problem with FWD cars is understeer.  Because the front wheels are doing the accelerating, turning, and the majority of stopping, the tires tend to "fall off" sooner than their RWD counterparts.  To combat this, FWD race car builders increase the chassis frequency, or "stiffness," of the rear of the car using sway bars or stiffer springs.

Photo of Chelsea the Civic Dog Legging by WindShadow Studios

In this post, readers will see how EJ2 Track Rat was able to create a low-budget solution for drivers looking to increase rear roll stiffness via use of a stiffer sway bar in the rear of the car.

Background

Alex's TrashTeg was driving fairly well.  He was able to pass competition school with NASA Northeast in it and he learned a fair amount about racecraft during the course of the season.  He was also having a ton of fun.  However, Alex was beginning to realize the limits of his budget-built car-- Partially because his car had too much dive, squat, and roll under braking, acceleration, and cornering, respectively.

Photo of TrashTeg Leaning by WindShadow Studios

When TrashTeg was first built, it had the following setup:
  • 205 Toyo RRs 
  • At a ride height of ~5.5-6 inches 
  • With a front spring rate of 650 pounds/inch,
  • Rear spring rate of 750 pounds/inch,
  • No front sway bar,
  • A 25 mm GodSpeed (eBay) rear sway bar,
  • And some Koni Sports he got for free from our friend Anthony
Our goal was to increase the roll stiffness of the car while still keeping the car controllable at the limits with a healthy amount of rotation in corners.  We had two options: increase front and rear spring rate, with a stiffer rear spring rate than front, or increase front spring rate and throw a big rear bar on.

Since I only had a pair of 800 pound/inch springs in my garage, we figured we'd throw the 800 pound/inch springs up front, and increase rear roll stiffness without springs.  The easiest way to do this is with a bigger sway bar, which A-Spec Racing (ASR) makes.  Their 32 mm hollow bars come in different thicknesses and since they're hollow, they have the advantage of less weight vs. their solid counterparts for the same amount of torsional resistance.

ASR Hollow Rear Sway Bar Kit

However, ASR bars are not cheap at ~$500 for a full kit and Alex had already purchased a $300 eBay sway bar kit.  He wasn't about to spend $500 more for the ASR product as a result.  But, he and I were both interested in doing something creative.

Getting Ready for some "Creativity" with a Welder

A while back, I saw a thread on a forum where a Miata driver welded additional metal to his/her sway bar to increase torsional resistance, thereby increasing chassis frequency at the respective end of the car.  

Much debate was had on this thread-- specifically whether one can weld to a sway bar and expect it to work because sway bars go through a forging process that allows them to become "spring steel."  Spring steel is highly malleable, but returns to the shape it was bent from fairly easily.  Welding to spring steel changes that property and increases brittleness.

Example of a Cracked Sway Bar (Not Ours)

Doing the Deed

Since we don't care about armchair engineers and we buy parts for our destined-for-doom race cars on eBay, we decided it'd be worth a go to attempt something similar.  The new setup would have the following changes: 
  • Ride height lowered to 5" at pinch welds
  • Front spring increased to 800 pounds per inch
  • A "custom" xxx mm solid rear sway bar, courtesy of the plumbing aisle at Home Depot
 We started by purchasing some steel black tubing with an inner diameter of 1" and a wall thickness of 0.133" for about $20.  A 1" inner diameter equates to 25.4 mm which is only slightly larger than the OD of our eBay sway bar.  

Our plan was to cut this bar to length so that it would fit between the pillowblocks that mount the sway bar to the subframe.  Then, we would cut the bar in half, length-wise, and weld half of the Home Depot pipe to the sway bar.  This would result in a solid sway bar with a diameter of ~28 mm.


Sway Bar Diagram from ASR

Our Plan from EJ2 Track Rat

We laid out the eBay sway bar after purchasing the pipe from Home Depot and we started by measuring where our addition would be and how short we'd need it cut.

Laying Out the Sway Bar

Next, we cut our Home Depot pipe to length using a cut-off wheel.  Ideally this would be done with a band saw, but with a pipe-vise it's easy to do with a $30 Harbor Freight cut-off wheel.  The cut just isn't as clean.

Alex Cutting Home Depot Pipe to Length

Next we cut the pipe in half, lengthwise using our cut-off wheel and our old school bench vise from eBay.

Cutting the Home Depot Pipe in Half Length-Wise

To weld our cut-off half of the Home Depot pipe to our eBay sway bar, we would need to first clamp the OD of the Home Depot bar to the sway bar.  After grinding the surface of the Home Depot pipe and the sway bar clean, we clamped the Home Depot bar to the sway bar using a set of Milwaukee vise grips.

Half of a Home Depot Pipe Clamped to an eBay Sway Bar

I ran a bead across a section to the left and right of the vise grip, then moved the vise grip down the length of the sway bar and repeated the process...the entire thing was done with flux wire.

Close-up of Beads Ran Next to Vise Grip

The entire bar welded up looked amusing, to say the least.  It really was also great practice for welding.  I needed some, so this was of benefit to me.

Picture 1 of Welded Sway

And Picture 2...

Finally, we sprayed the bar gloss black and mounted it onto the car.  Once on the car, we checked to ensure clearance between our modified bar and the subframe brace was satisfactory.

The Bar Mounted to the Subframe

Checking Fit with Bar at Full Droop

Checking Fit with Bar at Full Compression

And after installing the rear bar, we installed my front springs and manually set ride height as we always do-- the LoBuk way.

Alex Setting Ride Height to Clock Bushings

Another View of Alex Setting Ride Height to Clock Bushings

Impressions

Alex tested TrashTeg at Watkins Glen in October of 2019 with NASA NE to see how the changes improved the car.

Alex Suiting up for a Race at The Glen

On Track, he noticed sharper turn-in due to the stiffer front springs, but the larger rear sway also allowed the car to have less mid-corner push.  The new sway bar we created held up for a full weekend of abuse at one of the best and most demanding tracks in the Northeast.

After our racing shenanigans on Saturday we attended a NASA Northeast BBQ and had a good time.  The car held up, the mods made it faster, and we had a great time.

Me, Alex, Jeremy, and Yuko at the NASA NE BBQ

Until next time, thanks for reading!

Tuesday, June 18, 2019

A Method to the Madness: Setting Tire Pressures for the Race Track

Introduction
It was about two to three years ago when a friend at the track asked me the question, “what tire pressures do you run” when I first dove into the world of car setup.  The conversation went something like:
Me: I run whatever, I just like to drive FAST
My friend: Okay, but have you ever considered that you could be faster?
Me: What do you mean?  I am fast. I drive flat out.  I don’t care about my tire pressures.  Did you see that FWD drift in turn 3? I’m fast.  I don’t need to set tire pressures.
Drifting at New Jersey Motorsports Park Lightning Course
My friend: …Okay, Go out this next session and when you come into hot pits stop up at the wall and I’ll take your hot pressures for you.
(The “Ricky Bobby Effect” is slightly exaggerated here)

Note: Hot pressure = tire pressure after a full-pace session on track
Cold pressure = tire pressure in paddock or while cold, before on track
I was having issues with lockup going into turn 1 at New Jersey Motorsports Park (NJMP) Thunderbolt.  I felt as though I had more brake in the car, but the tires didn’t want to stop.  The tires felt sluggish and unresponsive to my inputs.

Turn 1: NJMP Thunderbolt

After my friend took my hot pressures once I came back into pit lane, we looked up the optimal hot pressure for the Nitto NT-01s I was running on some forums.  Based on our research, we decided to add one PSI to the tire while hot.  Miraculously, my braking ability increased, my lockups deceased, and my times decreased.

A man checking cold pressures at New York Safety Track

As outlined above, knowing one's hot and cold tire pressures can make a seasoned driver faster given different ambient conditions, but it can also improve safety for a novice track driver.

Cold pressures are typically set with a target hot pressure in mind. Because air expands when hot, we set our cold pressures low and the air will expand after a hot session, at which point we can record our hot pressure.

The hot pressure is the pressure the tire works best at. While knowing your cold pressure is important, it's your HOT pressure that will tell you if you're extracting the most grip out of your tire's contact patch.
As an instructor with the National Auto Sport Association (NASA) it's common to encounter first-time students that don't know whether they torqued their wheels, let alone set their tire pressures correctly. I have heard stories of students going on track with 60 PSI cold or 10 PSI cold and coming back with horrified, but safe, instructors.
A scared instructor
However with the right approach, you can be both fast and safe. For both approaches covered below, the assumed tools at disposal are:
1.) Car
2.) Race track
3.) A pen and paper
4.) Tire data (Google)
5.) A REPEATABLE tire pressure gauge
6.) A friend to help (optional)
Alex, TJ, and I going over tire temperature data at Watkins Glen

The First Approach (Easy but Less Optimal):
Anecdotally, tire pressure gauges are most accurate in the middle of their range. So for track days in a regular car, a 0-60 PSI gauge should do fine. This statement applies because for a street car, your hot pressures should be between 30 and 40 PSI on average.
You can purchase a tire pressure gauge from Joe's Racing, a reputable brand, on Amazon for a little over $20.

Joe's Racing tire pressure gauge

After obtaining your tire pressure gauge and going to the track, write down the ambient conditions on your paper with your pen. This should be done before each session. You should ask:

1.) Is it cloudy?
2.) Is it raining? How heavy if so? If heavy, a lot of this article isn't applicable, so stop reading now.
3.) What is the humidity level?
4.) What is the ambient temperature?
5.) What are your cold tire pressures?
Next, go to Google and search the interwebs for what people with your tires on similar cars like to set their hot pressures at for the track. It's important to get multiple opinions to get rid of the incorrect data, or noise, from your observations. Forums, Facebook, hobbyist websites, and manufacturer websites are some sources you can mull through.

Note: You can also just TALK TO PEOPLE at the track!
A review of the NT01 from Race & Track Driving

Once you know a base for your starting hot pressure, write that down, set your tire pressures at a reasonable cold pressure, and head on track. For most Civics, Integras, Miatas, and E30s with 15-inch tires, at most ambient conditions, I find 30 PSI cold to be a reasonable starting pressure.

Note: Your cold pressure must be lower than your target hot pressure. Air EXPANDS when hot!

Next, drive the car. Go out for a full session on the tires. If the car feels funny at all, try to drive around the car's character. If the car feels unsafe, bring it in. Not only will driving around your car's imperfections improve car control and driving skill, but it will allow us to reach our final goals which are:

1.) Observe what your tires feel like (very important)

2.) Get enough heat in your tires to get an accurate hot pressure (also very important)

Lawnmower life

If you've observed what your tires feel like, you should know to a certain degree what your car feels like under braking and turning. We will now use the following table to determine whether your car's tires are under-inflated, over-inflated, or just right:


Figure showing car "feel" relative to tire pressure

If, per the table, your car's tires feel under-inflated or over-inflated, adjust the pressures as necessary.  Repeat the steps of adjusting tire pressure and driving the car as necessary until you find a happy spot.

For a front-wheel drive car, when a hot pressure works well for the front of the car, I've found that the same hot pressure should be set at the rear of the car.  However, I'm close to certain that this is the right approached based on feel, but also based on data, which we will now cover in...

The Second Approach (Hard but Betterer)

For the second approach, we need one additional tool, which is:

1.) A tire pyrometer

A tire pyrometer uses a probe, inserted into the tire's tread, to measure the temperature of the tire's rubber.

Taking a reading of tire temperature (photo from Turnology)

The temperature of your tire's rubber is probably the most important measurement you can have for your tire, after your hot pressure.  This is because not only does tire temperature tell us about whether our pressures are set right, but it also tells us things like:

1.) Where the majority of the weight lies (front or rear of the car)

2.) How the spring rates or sway bars we've chosen affect tire loading

3.) Are our camber settings correct for this track?

A tire pyrometer

Some will use infrared (IR) temperature guns to read tire temperature when the car has pulled into pit lane, but this is not as accurate.

IR Temperature gun reading engine bay temperature

Part of why infrared guns are not useful for measuring tire temperature once the car has stopped and is in hot pit lane is because they only measure the temperature of the surface of the tire.  Tires cool extremely fast after a hot lap.  As a result, the surface temperature will not be representative of the tire's actual temperature at pace.

Additionally, user and machine error (distance from measuring target and surrounding brightness) can also affect the measurement.

Tire pyrometers can be found used on eBay for ~$50 if you wait for a good deal to pop up.  Mine was purchased two years ago (2017) for $50 in used condition.  It sits in the glove box of my Civic during practice sessions.  My friend Alex's was purchased this year (2019) for $60 with a carrying case.  He will be using this at upcoming events.

Alex (owner of TrashTeg) and Brian going head to head in their Honda Challenge H4 cars.

In the second approach, we do most of the same as the first, initially.

1.) Record ambient conditions

2.) Find optimal hot pressure for tire and car

3.) Set cold pressures as described above

4.) Finally, go drive the car-- observing how the car feels

Where the second approach differs starts with when we pull the car off track.  In the first approach, we may wait until the checkered flag is thrown.  After this, we may have a cooldown lap and bring the car in to record our tire pressures.  However, remember that I said that tires cool extremely fast.

So, we pull the car in a lap or two early after running it at full pace.  We come to a full stop in hot pits, and we have a friend immediately record tire temperatures-- or we do this ourselves.  If you're going to do this yourself, put your pyrometer and tire pressure gauge in your glovebox.

Recording tire pressure at Watkins Glen in a racing suit

There are three tire temperature measurements to record for each tire-- a total of 12 measurements.  We want:

1.) Inner tire temperature
2.) Middle tire temperature
3.) Outer tire temperature

I typically record my tire temperatures first, in order of driver front tire, passenger front, driver rear, and passenger rear for a clockwise rotation track.  Then, since tire pressure decreases less rapidly with time, I record tire pressures second.

There are printouts available online that make the recording process easier.  Or, you can make your own printout.  Digesting the data from a printout is much easier than a bunch of scribbles in a beat up book (which is what I do).

Photo taken from Quickcar Racing Products

As mentioned above, tire temperatures can tell you a lot about the car beyond what your pressures should be.  This is why I prefer this method.  I'll briefly go over what temperature can tell us for camber and chassis loading and get back to specifics about hot tire pressures.

Every tire has an optimal average temperature.

Average temperature should be close to that optimal temperature and is mainly driven by weight-to-tire-width ratio, spring rate, and other variables.

Camber and other alignment/chassis setup factors can affect tire temperature distribution from the outside to the inside.  Generally we want a 10-15 deg. F. distribution from inside to outside with the inside hotter than the outside.  This tells us that the camber is adequately negative for a given track and chassis setup condition.

Setting camber with a plumb bob, a stick, and some stuff and things.  Pic from LexiLaron.

However, for the sake of this article, we're looking for two things:

1.) The middle of the tire is not hotter than the outside and inside

2.) The middle of the tire is not colder than the outside and inside

Insert Civic picture here

We want to set the hot tire pressure so that the middle lies in between the outer and inner temperature.  The procedure for adjusting hot tire pressure based on a pyrometer reading is as follows:

1.) If the middle temperature is higher than inner and outer temps, the hot pressure is too high-- lower it by 1 PSI

2.) If the middle temperature is lower than inner and outer temps, the hot pressure is too low-- raise it by 1 PSI

Continue adjusting tire pressure per the procedure above until the middle temperature is in between the outer and inner tire temperatures.

Once the tire temperature distribution is satisfactory per the above requirements, we employ the feel technique which we covered in the first method.  Based off of experience with a car of the following specs, I find a range of ~5-6 PSI where I can adjust hot pressures to influence car feel:

2500 lbs Civic
B18B1 Engine (stock)
Integra brakes
Toyo RR 15/50 R205 tires

Once the car feels good, feel free to rip.  Take the data from your notes home, read up on suspension setup, make tweaks, and be faster than before (hopefully).

Peace

Thanks for reading all!  Have fun racing and driving.

Monday, October 29, 2018

#TrashTeg, The Chronicles; Part 2-- Safety Gear

#TrashTeg, The Chronicles; Part 2-- Safety Gear

When EJ2 Track Rat last left off regarding the story of #TrashTeg, we touched on how we got this free car from Delaware to Philadelphia and we touched on how we made it run with a distributor cap, spark plug wires, spark plugs, and some water in the radiator.

In this next part, we'll talk about how we stripped the car down and installed some safety gear.

Figure 1: Alex at New Jersey Motorsports Park Shaking Down the Teg After we Built it

Since my Civic was being converted into a race car, I no longer needed the roll bar that I installed for high performance driving education (HPDE) and street driving.  I was installing a cage, and the car was no longer going to be street-driven as this is required in wheel-to-wheel racing.  However Alex was building a track car and it's never a bad thing to have additional safety.

Figure 2: The Roll Bar Previously in my Civic

The National Auto Sport Association's Northeast Region typically informs new drivers that the most important mods one can make to their car are in the form of safety upgrades.  A useful acronym to keep in mind when doing safety upgrades was originally coined by our HPDE 1 Instructor, Enrique, and goes as follows:

S-H-H 
AKA 
"SHH! STOP BUYING CAR PARTS AND GET ON TRACK!"

Figure 3: Rally Armor Mud Flaps Look Great but Don't Make You Safer

AKA (for real this time)
SEAT.  HARNESS.  HANS.

Figure 4: A Driver Strapped Into a Seat with a Harness, a Hans, and (in This Case) a Roll Cage

Hans is a popular model of "head and neck restraint" which is used in combination with your harnesses and your helmet to prevent whiplash from occurring in a high-velocity frontal accident.

Figure 5: How a Hans Device Works

A roll bar is used to prevent rollover damage to the driver's person, but it is also used as a mounting point for the harness.  Other options out there include harness bars, but these are not recommended as they have been known to buckle inward in the event of a forward collision.

Figure 6: Bent Harness Bar in 8th Gen Civic on Frontal Collision

The safety components mentioned above are meant to work as a system and using harnesses with your stock seat, or a regular Hans with your 3-point factory belt are not recommended.  I've done tech with NASA since 2016 and we always prefer a stock car to roll through over a car with improperly installed harnesses, roll bars without padding, and/or 3-point seat belts over fixed-back, bucket seats.

The simplest rule?

Before heading to a track day, always review the rule book and reach out to the officials for help when you are in doubt.  Ask for help and ye shall receive it!

Figure 7: A Car with 4-Point Harnesses Not Intended for Use with Stock Seats

Once we got the roll bar removed from my Civic, we had to begin prepping the interior of Alex's Integra, the #TrashTeg.  To start, we stripped all of the interior out of the car.  The major interior items that needed to be removed were:

The carpet
The seats
The center console
The seat belts
And the headliner

Figure 8: Interior of the Trash Teg

Next we removed the sound deadening from the car.  Sound deadening is found in most passenger cars in various areas around the chassis-- most notably the floor and transmission tunnel.  It is used to dampen vibrations and suppress road noise transmitted from the tires to the driver, but we don't care about noise and comfort in racing!  We care about going FAST.

Figure 9: Ricky Bobby

Sound deadening removal can be long and tedious or quick and easy depending on the fanciness of your car.  For example, my Civic's sound deadening came up on its own with some snow, a hammer, and a chisel (we did it outside).

However some cars have thicker, better quality sound deadening that requires more convincing to come off.  A common technique is dry ice.  For our project, we used about $20 of dry ice from a beer distributor.  However, a low buck method to remove sound deadening for people who have a winter season is to leave the race car out in freezing, cold weather overnight and knock the sound deadening loose in the morning.

Figure 10: Sound Deadening Removal with Dry Ice, a Mallet, and (Maybe) a Chisel

Given that this car was sitting in such rough conditions for such a long time (outside, not moving, when it did move it was driven and worked on by a sub-par mechanic), the sound deadening wasn't too hard to remove.  Alex and I got it all up within about 1.5 hours.

Figure 11: Our Tools we Used for Removal of Sound Deadening

Figure 12: The Trunk Area without Sound Deadening

While it was great for sound deadening removal, the neglect this car was put through was not good for much else.  When we pulled the carpet, we discovered that a significant amount of rust had eaten through one of the areas of the floor where the roll bar was supposed to mount to.

Figure 13: Passenger Side Rear Passenger Footwell with Rust

Alex and I took an old welder that had stopped working in his garage, we cut it up for scrap metal, pulled the wires for electronics spares, and salvaged whatever else we could before leaving it out on the Northwest Philly streets for scrappers.  With that same metal, we welded up a patch in the floor and removed as much of the rust we could.  Given that we had just started at welding, we didn't consider our work too shabby (though it could use improvement).

Figure 14: Shabby but Functional Welds on Alex's Floor Pan

After getting the roll bar installed, Alex then needed a pair of seats-- one for the driver and one for the instructor.  For HPDE I always recommend having a second seat.  You're not worried about the extra weight an instructor will gain you because you're not trying to win, but you'll also likely learn more from the right-seat advice.

Figure 15: Even Seasoned Racers Benefit from Good Instruction

Originally, Alex was contemplating spending major coin on these racing seats, but I told him that for HPDE we could use some cheap fixed back seats and be compliant with the rules.  Additionally, if he ever decided to go racing, when the cage got installed in the car, we could brace the back of the seats to the roll cage harness bar and still be legal!

Figure 16: Back Brace Used to Reinforce Back of Fiberglass Seat to Roll Cage Harness Bar

After some discussion, Alex and I set out to find some cheap seats on Craigslist, quickly coming up with an ad for some old Corbeaus that used to be in a Mustang.  The seller listed the seats for $200 but Alex ended up scooping them for a smoking deal of about $140.

Figure 17: These Seats were Intact and Ready to be Used

For brackets, we utilized the high quality, OEM seat rails, and $35 worth of steel bar stock with some spare hardware for the materials.  We cut the steel bar stock into four separate 18-inch-long pieces and mounted one at the fore-end and one at the aft-end of the OEM seat rails, securing them with spare hardware.  We then bolted the seats to the bars with the same said hardware.

Figure 18: Two Pieces of Bar Stock for Each Seat

Figure 19: Spare Hardware Used to Mount Seat to Bracket and Bracket to Sliders

Figure 20: Side View of Seat Mounted in Car

After we installed the seats, we had two last items to install-- the harnesses!  One of the harnesses, like many of the parts in Honda Challenge, was handed down to me from one friend, Anthony.

Since I didn't plan on having a passenger seat while racing initially, I gave Alex this spare harness so he could build his #TrashTeg.  Alex then bought a second harness of his own and some hardware to keep the driver and passenger safe.

Figure 21: G-Force Racing Harnesses and Associated Hardware for Install

With all of our gear laid out, we went to work getting alex seated in his ideal position for driving.

Figure 22: That Awkward Moment when You're Too Fast for Anything in Life

Once you have the seating position, the install for the harnesses is pretty much done by the book.  When I install harnesses on vehicles I'm working on, I typically use the Schroth Racing installation guide which can easily be found on their website.  A quick link to the PDF can be found here as well.

Figure 23: Drawing from the Schroth Racing Website's Guide Showing Proper Vs. Improper Harness Mounting Angles

As shown above, there is a given range of angles the installer must adhere to to make the system safe for the driver.  This is why it is imperative for the driver to be in their desired position when installing their harnesses.  It allows them to have control over where the lap belt mounting points need to go and if a cage is being welded in the car, the cage builder has a reference for a good harness bar height.

Lastly, in the picture below, note the metal collars that are on the harness bar.  These collars are on the roll bar to prevent the harnesses from sliding to the left or the right in the event of a frontal collision.  A simple and cheap, alternative solution to using these collars is roll bar padding foam or even generous amounts of duct or electrical tape.

Figure 24: Picture with Collars Circled for Reference

The final product was not beautiful, but it was safe and functional-- a good race car's desired state.  Check out some pictures of the final product below:


Figure 25 and 26: Passenger Seat with Old Harness from My Civic

Figure 27: Driver Seat with New Harness

Figure 28: Stock Steering Wheel with Air Bag Removed for Track-Only Safety (Remember, All Safety Components Act as a System)

Figure 29: View from Rear of Car Showing Newly Installed Safety Gear

In the next installation of #TrashTeg, you can expect to see regular maintenance activities that are good to attend to before hitting the track as well as some other minor changes.

Thank you for reading and keep coming back.




.